PUBLICATIONS

Click the button for a full list of my scientific publications:

FEATURED RESEARCH ARTICLES

Optimizing Cadences with Realistic Light Curve Filtering for Serendipitous Kilonova Discovery with Vera Rubin Observatory












 
Igor Andreoni, Michael W. Coughlin, Mouza Almualla, Eric C. Bellm, Federica B. Bianco, Mattia Bulla, Antonino Cucchiara, Tim Dietrich, Ariel Goobar,  Erik C. Kool, Xiaolong Li, Fabio Ragosta, Ana Agues-Carracedo, Leo P. Singer 
Andreoni2021LSST.png
We explore expectations for the Vera C. Rubin Observatory to find rare kilonovae during its wide, fast, deep survey of the sky.

What cadence and which filters should be preferred to maximize the discovery of such interesting but elusive transients?
 
Fast-transient Searches in Real Time with ZTFReST: Identification of Three Optically-discovered Gamma-ray Burst Afterglows and New Constraints on the Kilonova Rate
Igor Andreoni, Michael W. Coughlin, Erik C. Kool, Mansi M. Kasliwal, Harsh Kumar, Varun Bhalerao, Ana Sagues Carracedo, Anna Y. Q. Ho, Peter T. H. Pang, Divita Saraogi, Kritti Sharma, Vedant Shenoy, Eric Burns, Tomas Ahumada, Shreya Anand, Leo P. Singer, Daniel A. Perley, Kishalay De, U.C. Fremling, Eric C. Bellm, Mattia Bulla, Arien Crellin-Quick, Tim Dietrich, Andrew Drake, Dmitry A. Duev, Ariel Goobar, Matthew J. Graham, David L. Kaplan, S. R. Kulkarni, Russ R. Laher, Ashish A. Mahabal, David L. Shupe, Jesper Sollerman, Richard Walters, and Yuhan Yao
Thanks to ZTFReST we can discover fast transients in optical survey data even without gravitational-wave or gamma-ray burst triggers!
 
In the first few months of operations, ZTFReST has identified fast and rare sources such as cosmological afterglows and supernova shock breakouts  
Screen Shot 2021-04-26 at 5.24.19 PM.png
Constraining the Kilonova Rate with Zwicky Transient Facility Searches Independent of Gravitational Wave and Short Gamma-ray Burst Triggers
Igor Andreoni, Erik C. Kool, Ana Sagues Carracedo, Mansi M. Kasliwal, Mattia Bulla, Tomas Ahumada, Michael W. Coughlin, Shreya Anand, Jesper Sollerman, Ariel Goobar, David L. Kaplan, Tegan T. Loveridge, Viraj Karambelkar, Jeff Cooke, Ashot Bagdasaryan, Eric C. Bellm, S. Bradley Cenko, David O. Cook, Kishalay De, Richard Dekany, Alexandre Delacroix, Andrew Drake, Dmitry A. Duev, Christoffer Fremling, V. Zach Golkhou, Matthew J. Graham, David Hale, S. R. Kulkarni, Thomas Kupfer, Russ R. Laher, Ashish A. Mahabal, Frank J. Masci, Ben Rusholme, Roger M. Smith, Anastasios Tzanidakis, Angela Van Sistine, Yuhan Yao
gantt_chart_rates.png
We constrained the kilonova rate in the nearby Universe with ZTF. In this figure, we compare the ZTF upper limit for GW170817-like kilonovae with results from other optical surveys and with the neutron star merger rate calculated from the observations of gravitational waves, short gamma-ray bursts, Galactic double neutron-star systems, and via population synthesis.
*The figure above is an up-to-date version published in Andreoni & Coughlin et al. (2021)
Zwicky Transient Facility Constraints on the Optical Emission from the Nearby Repeating FRB 180916.J0158+65
Andreoni, Igor;  Lu, Wenbin;  Smith, Roger M.;  Masci, Frank J.;  Bellm, Eric C.; Graham, Matthew J.;  Kaplan, David L.;  Kasliwal, Mansi M.;  Kaye, Stephen; Kupfer, Thomas;  Laher, Russ R.;  Mahabal, Ashish A.;  Nordin, Jakob;  Porter, Michael; Prince, Thomas A.;  Reiley, Dan;  Riddle, Reed;  Van Roestel, Joannes;  Yao, Yuhan
plot_ztf_r3.png
Figure: ZTF observations of a nearby, periodic FRB source.  
Probing the extragalactic fast transient sky at minute time-scales with DECam
Andreoni, Igor; Cooke, Jeff;  Webb, Sara; Rest, Armin;  Pritchard, Tyler;  Caleb, Manisha;  Chang, Seo-Won.; Farah, Wael;  Lien, Amy;  Möller, Anais;  Ravasio, Maria E.;  Abbott, Timothy M. C.;  Bhandari, Shivani; Cucchiara, Antonino;  Flynn, Chris; Jankowski, Fabian; Keane, Evan F.;  Moriya, Takashi J.;  Onken, Chris A.; Parthasarathy, Aditya;  Price, Daniel C.;  Petroff, Emily;  Ryder, Stuart;  Vohl, Dany;  Wolf, Christian
fugure_surveyplot3D_ul_DWF.png
Figures: Light curve of a fast optical transient candidate (note that the abscissa is in minutes!). Plot of the 3D phase space probed with DECam during the Deeper Wider Faster program. 
GROWTH on S190814bv: Deep Synoptic Limits on the Optical/Near-infrared Counterpart to a Neutron Star─Black Hole Merger
Andreoni, Igor; Goldstein, Daniel A.;  Kasliwal, Mansi M.;  Nugent, Peter E.; Zhou, Rongpu;  Newman, Jeffrey A.;  Bulla, Mattia;  Foucart, Francois; Hotokezaka, Kenta;  Nakar, Ehud;  Nissanke, Samaya;  Raaijmakers, Geert; Bloom, Joshua S.;  De, Kishalay;  Jencson, Jacob E.;  Ward, Charlotte; Ahumada, Tomás;  Anand, Shreya;  Buckley, David A. H.;  Caballero-García, Maria D. Castro-Tirado, Alberto J.;  Copperwheat, Christopher M.;  Coughlin, Michael W.; Cenko, S. Bradley;  Gromadzki, Mariusz;  Hu, Youdong;  Karambelkar, Viraj R.; Perley, Daniel A.;  Sharma, Yashvi;  Valeev, Azamat F.;  Cook, David O.; Fremling, U. Christoffer;  Kumar, Harsh;  Taggart, Kirsty;  Bagdasaryan, Ashot; Cooke, Jeff;  Dahiwale, Aishwarya;  Dhawan, Suhail;  Dobie, Dougal;  Gatkine, Pradip; Golkhou, V. Zach;  Goobar, Ariel;  Chaves, Andreas Guerra;  Hankins, Matthew; Kaplan, David L.;  Kong, Albert K. H.;  Kool, Erik C.;  Mohite, Siddharth; Sollerman, Jesper;  Tzanidakis, Anastasios;  Webb, Sara;  Zhang, Keming

Screen Shot 2020-04-02 at 9.19.28 PM.png
BHNS-Foucart-4.png
Upper figure: The ejecta mass and viewing angle parameter space of GW190814 was constrained with DECam optical observations.
Left figure: Constraints on the parameter space of a 
black hole-neutron star binary
progenitor of GW190814
GROWTH on S190510g: DECam Observation Planning and Follow-up of a Distant Binary Neutron Star Merger Candidate

Andreoni, Igor; Goldstein, Daniel A.; Anand, Shreya; Coughlin, Michael W.; Singer, Leo P.; Ahumada, Tomás; Medford, Michael; Kool, Erik C.; Webb, Sara; Bulla, Mattia; Bloom, Joshua S.; Kasliwal, Mansi M.; Nugent, Peter E.; Bagdasaryan, Ashot; Barnes, Jennifer; Cook, David O.; Cooke, Jeff; Duev, Dmitry A.; Fremling, U. Christoffer; Gatkine, Pradip Golkhou, V. Zach; Kong, Albert K. H.; Mahabal, Ashish; Martínez-Palomera, Jorge; Tao, Duo; Zhang, Keming

Screen Shot 2019-09-14 at 12.10.55 PM.pn
Screen Shot 2019-09-14 at 12.11.20 PM.pn
Upper figure: The refined skymap of the S190510g gravitational wave event, with the circles representing the DECam observations that we performed. 
Left figure: Triangles indicate the observational constraints that we placed on transient emission like GW170817.
A strategy for LSST to unveil a population of kilonovae without gravitational-wave triggers

Andreoni, Igor; Anand, Shreya; Bianco, Federica B.; Cenko, Brad; Cowperthwaite, Philip; Coughlin, Michael W.; Drout, Maria; Golkhou, V. Zach; Kaplan, David; Mooley, Kunal P.; Pritchard, Tyler A.;

Singer, Leo P.; Webb, Sara

Figure: Light curve of the kilonova associated with the gravitational-wave event GW170817 sampled as if it was observed with LSST using the proposed cadence strategy.
lcGW170817gi.png
Follow Up of GW170817 and Its Electromagnetic Counterpart
by Australian-Led Observing Programmes

Andreoni, I.;  Ackley, K.;  Cooke, J.;  Acharyya, A.;  Allison, J. R.;  Anderson, G. E.; Ashley, M. C. B.;  Baade, D.;  Bailes, M.;  Bannister, K.;  Beardsley, A.;  Bessell, M. S.; Bian, F.;  Bland, P. A.;  Boer, M.;  Booler, T.;  Brandeker, A.;  Brown, I. S.; Buckley, D. A. H.;  Chang, S. -W.  Coward, D. M.;  Crawford, S.;  Crisp, H.;  Crosse, B.; Cucchiara, A.;  Cupák, M.;  de Gois, J. S.;  Deller, A.;  Devillepoix, H. A. R.;  Dobie, D.; Elmer, E.;  Emrich, D.;  Farah, W.;  Farrell, T. J.;  Franzen, T.;  Gaensler, B. M.; Galloway, D. K.;  Gendre, B.;  Giblin, T.;  Goobar, A.;  Green, J.;  Hancock, P. J.; Hartig, B. A. D.;  Howell, E. J.;  Horsley, L.;  Hotan, A.;  Howie, R. M.;  Hu, L.;  Hu, Y.; James, C. W.;  Johnston, S.;  Johnston-Hollitt, M.;  Kaplan, D. L.;  Kasliwal, M.; Keane, E. F.;  Kenney, D.;  Klotz, A.;  Lau, R.;  Laugier, R.;  Lenc, E.;  Li, X.;  Liang, E.; Lidman, C.;  Luvaul, L. C.;  Lynch, C.;  Ma, B.;  Macpherson, D.;  Mao, J.; McClelland, D. E.;  McCully, C.;  Möller, A.;  Morales, M. F.;  Morris, D.;  Murphy, T.; Noysena, K.;  Onken, C. A.;  Orange, N. B.;  Osłowski, S.;  Pallot, D.;  Paxman, J.; Potter, S. B.;  Pritchard, T.;  Raja, W.;  Ridden-Harper, R.;  Romero-Colmenero, E.; Sadler, E. M.;  Sansom, E. K.;  Scalzo, R. A.;  Schmidt, B. P.;  Scott, S. M.; Seghouani, N.;  Shang, Z.;  Shannon, R. M.;  Shao, L.;  Shara, M. M.;  Sharp, R.; Sokolowski, M.;  Sollerman, J.;  Staff, J.;  Steele, K.;  Sun, T.;  Suntzeff, N. B.;  Tao, C.; Tingay, S.;  Towner, M. C.;  Thierry, P.;  Trott, C.;  Tucker, B. E.;  Väisänen, P.; Krishnan, V. Venkatraman;  Walker, M.;  Wang, L.;  Wang, X.;  Wayth, R.;  Whiting, M.; Williams, A.;  Williams, T.;  Wolf, C.;  Wu, C.;  Wu, X.;  Yang, J.;  Yuan, X.;  Zhang, H.; Zhou, J.;  Zovaro, H.

GW170817_spectra_Andreoni17.png
GW170817_lc_Andreoni17.png
SM_NGC4993_18Aug2017_r_marked.png
Figures: Detection image, rapidly-reddening spectra, and light curve of the GW170817 kilonova, the first discovered optical counterpart to a gravitational-wave signal. The Australian astronomical community teamed up to collect a rich dataset, including optical/near-infrared imaging and spectroscopy, radio imaging, and searches for fast radio bursts. 
Mary, a Pipeline to Aid Discovery of Optical Transients

Andreoni, I.;  Jacobs, C.;  Hegarty, S.;  Pritchard, T.;  Cooke, J.;  Ryder, S.

Figures: The Mary pipeline uses image subtraction to unveil transient and variable sources (top figure). Supernovae in distant galaxies (right figure) can be discovered with this technique, by subtracting the reference image the science image. The Mary pipeline was designed to work on DECam images, but we used it also for images taken with the Hyper-Suprime Cam mounted on the 8.2-m Subaru telescope.
residual_paper1.png
stampsall2.png
A time domain experiment with Swift: monitoring of seven nearby galaxies

Andreoni, I.;  D'Avanzo, P.;  Campana, S.;  Branchesi, M.;  Bernardini, M. G.; Della Valle, M.;  Mannucci, F.;  Melandri, A.;  Tagliaferri, G.

pictures_X_7min.png
Figures: We monitored seven nearby galaxies with the Neil Gehrels Swift Observatory searching for supernova shock breakouts, bright flashes generated by the collapse of massive stars. These images show our galaxy sample as observed in the X-rays (left) and in the UltraViolet (right). 
pictures_UV_7min.png